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ABSTRACT 
Dielectric Resonator Antennas (DRAs) have received lots of attention in the last two decades due to several 

attractive characteristics such as high radiation efficiency, light weight, and low profile. There is also increasing 

challenges for the design of high bandwidth and multi-bands antennas which can be achieved using MHD 

Antennas for high speed and reconfigurable applications in wireless communication. In this work the objective 

is to design and develop a cylindrical MHD antenna with circular patch and two annular rings. Magneto-

hydrodynamics (MHD) Antenna is a Fluid based Antenna in which the fluid resonator provides excellent 

coupling of RF energy into fluid. Fluid resonator volume, chemical properties, electric field and magnetic fields 

are the factors of resonant frequency, gain and return loss. The proposed antenna shall be tuned in the wide band 

of frequency range between 7.9 – 27 GHz. Simulations using HFSS and measurements have been carried out in 

respect of design prototype for ‘Air’ and BSTO (Barium Strontium Titanate Oxide) microwave fluid. The 

findings in this work that the Fluid Resonator based hybrid approach for antenna enhances the bandwidth by a 

large factor and annular rings with circular patch in proper geometry provides multiband operation. Variation in 

the volume of the fluid shifts the resonant frequency of the solid structure in the wideband. When magnetic field 

is applied, significant improvement has been noticed in return loss of the proposed antenna. 

 

KEYWORDS: Frequency agility, DRA, reconfigurability, MHD, radiation pattern, saline water. 

I. INTRODUCTION 
The word magneto hydrodynamics (MHD) is derived from magneto – meaning magnetic field, hydro – 

meaning liquid, and dynamics meaning movement. The field of MHD was initiated by Hannes Alfvén in 1942 

and later in 1970, Ting and King determined that the conducting fluid can oscillates under the influence of 

electromagnetic field conditions. This conducting fluid can be used as one of the element of antenna at 

microwave frequencies. An antenna based on the MHD principle using hybrid approach in which a Dielectric 

Fluid Resonator in combination with circular patch and annular rings is presented. The feed given to this 

antenna is a microstrip feed. The fluid resonator was filled with ‘Air’ and ‘BSTO (Barium Strontium Titanate 

Oxide) microwave fluid’. The molecules of the fluid oscillate and impact ionization takes place due to which 

electromagnetic field changes. The circular patch helps the fluid to resonate in the cylindrical shaped fluid 

resonator. The annular rings used around Fluid resonator provide multi-band operation. Measurement for 

Resonant frequency, Return Loss and impedance matching using 40GHz Agilent VNA (Vector Network 

Analyzer) 5230A has been performed. In addition to above parameters simulations using HFSS have been 

carried out for S11, Radiation Pattern and Gain. Taking benefit from the advantages of DRAs and the antenna 

symmetry using hybrid approach, the results shows wideband (7.9-27 GHz) with multiband features and shift 

of resonant frequencies by changing fluid volume for the proposed Antenna Prototype. 

 

II. FORMULATIONS 
Navier–Stokes equations 

The Navier–Stokes equations dictate not position but rather velocity. A solution of the Navier–Stokes equations 

is called a velocity field or flow field, which is a description of the velocity of the fluid at a given point in space 

and time. Once the velocity field is solved for, other quantities of interest (such as flow rate or drag force) may 

be found. This is different from what one normally sees in classical mechanics, where solutions are typically 

trajectories of position of a particle or deflection of a continuum. Studying velocity instead of position makes 

more sense for a fluid; however for visualization purposes one can compute various trajectories 

http://www.ijesrt.com/
http://en.wikipedia.org/wiki/Position_%28vector%29
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Velocity_field
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wiktionary.org/wiki/Particle
http://en.wikipedia.org/wiki/Continuum_%28theory%29
http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
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Navier Stokes equation is given as 

ρ (v. ∇v +
dv

dt
) = −∇. p + η∇2v + J × B                (3.3) 

 

Where ρ = mass density 

            J= Current density 

ν = velocity of fluid 
            p=pressre 

η = fluid viscosity 

            B=Magnetic field 

 

By solving equation 3.3, The equation of motion of a fluid in a uniformly rotating frame with angular velocity w 

is given by 

 

v. ∇v +
dv

dt
+ 2ω × ν + ω × (ω × r) = −

∇p

ρ
+ ν∇2ν             (3.4) 

 

Where ν = kinetic viscosity =
η

ρ
 

νx =
∂ψ

∂y
(x, y, z) = −

∂ψ

∂x
(x, y, z)                (3.5) 

 

Assuming the flow to be two dimensional and fluid to be incompressible, obtain an equation for the stream 

function. Velocity of fluid is given below 

ν = νx(t, x, y)x̂ + νx(t, x, y)ŷ                    (3.6)    

 

Where ψis a stream function telling trajectory of fluid particle 

ν = νx(t, x, y)x̂ + νx(t, x, y)ŷ                    (3.6)    

ω = ω0ẑ                                                       (3.7) 

νx =
∂ψ

∂y
= −

∂ψ

∂x
                                             (3.8) 

ψ = ψ(t, x, y)                                                (3.9)     

 

Varticity Ω is defined as 

Ω = ∇ × ν = ∇ × (νxx̂ + νxŷ)                       (3.10)       

Ω = (
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ) × (νxx̂ + νxŷ)          (3.11)   

 

 

Where ∇=
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ                          (3.12)     

Ω =
∂νx

∂x
ẑ −

∂νx

∂y
ẑ −

∂νx

∂z
ŷ −

∂νx

∂z
x̂                   (3.13)    

−
∂νx

∂z
ŷ −

∂νx

∂z
x̂ = 0 because no moment of fluid in z direction 

By using equation 3.8 

Ω =
∂

∂x
(−

∂ψ

∂x
) +

∂

∂y
(
∂ψ

∂y
)                                 (3.14)   

Ω = −
∂2ψ

∂x2 −
∂2ψ

∂y2 = −∇2ψ                                (3.15) 

 

Varticity is known as spinning motion of fluid. 

 

Taking the curl on navier stock equation is given by:- 

∇ × (v. ∇v) + ∇ × (
dv

dt
) + ∇ × (2ω × ν) + ∇ × (ω × (ω × r)) = ∇ × (−

∇p

ρ
) + ∇ × (ν∇2ν) 

                         

                                                   (3.16) 

By using equation3.10 in equation 3.16 

http://www.ijesrt.com/
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∇ × (Ω × v) + (
dΩ

dt
) + 2∇ × (ω × ν) + ∇ × (ω × (ω × r)) = ν∇2Ω          (3.17) 

here∇ × (−
∇p

ρ
) = 0  (curl of gradient is zero) 

(ω × (ω × r)) = 0       (Assume ω is constant) 

 

So equation comes out to be 

∇ × (Ω × v) + (
dΩ

dt
) + 2∇ × (ω × ν) = ν∇2Ω          (3.18) 

 

The field E, B, ν can be obtained on solving coupled Maxwell and Navier’s stock equation  

∇ × E = −μ
∂H

∂t
 

∇ × H = σ(E + ν × B) + ϵ
∂E

∂t
                                (3.19) 

Ω = ∇ × ν 

B=μH                                 (3.20) 

∇. ν = 0                                  (3.21) 

 

There exist a vector field ψ such that ν = ∇ × ψ and ψ can be chosen such that 

∇. ψ=0                                 (3.22) 

The magnetic vector potential produced by fluid can’t be taken as 

A(t, r) =
μ

4πr
∫ J(t −

r

c
+

r̂r′

c
, r′)d3r′                                  (3.23) 

 

Where volume integral define region of conducting fluid. Taking Inverse Fourier Transformation of v and B 

gives 

ν(t, r) = ∫ ν(ω, r)ejωt
r

dω                                  (3.24) 

B(t, r) = ∫ B(ω, r)ejωt
r

dω                                  (3.25) 

ν × B=∫ ej(ω1,ω2)t(ν̂(ω1, r) × B̂(ω2, r))dw1dω2                                  (3.26) 

A(ω, r) =
μe−jkr

4πr
∫ J(ω, r)ejk(r−r′)d3r′(3.27) 

 

Where k=
ω

c
and k.r>>1 since ϕ(ω, r) is scaler 

div. A= -jμtωϕ                                 (3.28) 

ϕ =
1

μϵω
div. A                                  (3.29) 

E = −∇ϕ − jωA                                  (3.30) 

 

Fluid Frame Description 

 

E = Exx̂      Electric field in X direction                             (3.31) 

B = Byŷ     Magnetic field in Y direction                              (3.32) 

ν = νxx̂ + νyŷ + νzẑ                                   (3.33) 

We know that 

F = ma = Q(Ex + ν × B)                                  (3.34) 

 

Acceleration in x direction 

νx
′ =

∂νx

∂t
=

Q

m
(Ex − νzBy)                                   (3.35) 

 

No Acceleration in y-direction 

νy
′ =

∂νy

∂t
= 0                                   (3.36) 

νz
′ =

∂νz

∂t
=

Q

m
νxBy                                   (3.37) 

d

dt
[
νx

νz
] =

Q

m
By [

0 −1
1 0

] [
νx

νz
] +

Q

m
Ex [

1
0
]                                   (3.38) 

http://www.ijesrt.com/
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Let 
Q

m
= α 

νz
′

αBy
= νx                                   (3.39) 

 

Diffentiation above equation we get 
νz

′′

αBy
= ν′x                                   (3.40) 

Q

m
(Ex − νzBy) =

νz
′′

αBy
                                    (3.41) 

We know that 

ν′x = α(Ex − νzBy)                                    (3.42) 

 

Diffentiation above equation we get 

νx
′′ = α(0 − ν′zBy) 

νx
′′ = −αν′zBy                                      (3.43) 

νz
′ = ανxBy 

νx
′′ = −(αBy)

2νx                                    (3.44) 

 

General solution of this equation is given as 

νx(t) = A cos(αByt + ϕ)                                    (3.45) 

Let αBy = ω 

 

Hence, fluid frame velocity shall be 

νx(t) = A cos(wt + ϕ)                                     (3.46) 

We know that  

νx(0) = 0 at t=0 

Acosϕ = 0 

cosϕ = cos(
nπ

2
)                                   (3.47) 

where n=1,2,3,……….. 

Put n=1 

ϕ =
π

2
 

νx(t) = A cos(wt +
π

2
) 

νx(t) = A sinwt =A sin(αByt)                                    (3.48) 

νz(0) = 0 

νx
′ (t) = α(Ex − νzBy)                                     (3.49) 

νx
′ (0) = αEx                                      (3.50) 

νx
′ (t) = Aω cos(ωt)                                       (3.51) 

νx
′ (0) = Aω                                       (3.52) 

 

From equation 3.50 and 3.52 we get 

Aω =  αEx                                       (3.53) 

A =
αEx

ω
=

αEx

αBy
=

Ex

By
                                       (3.54) 

A =
Ex

By
 

νx(t) =
Ex

By
sin(ωt)                                       (3.55) 

 

We know that 

νx
′ =

Q

m
(Ex − νzBy) = Aω cos(ωt)                                       (3.56) 

α(Ex − νzBy) =
Ex

By
αBy cos(ωt) 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Kumar * et al., 6(9): September, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [106] 

(Ex − νzBy) = Ex cos(ωt) 

−νzBy = Ex cos(ωt) − Ex 

νzBy = Ex(1 − cos(αByt)) 

νz =
Ex

By
(1 − cos(αByt))                                        (3.57) 

 

The fluid velocity can be defined as 

Put Ex = E0 and By = B0 we get the following expression 

ν =
E0

B0
(sinw0t x̂ + (1 − cosw0t)ẑ)                                       (3.58) 

 

Current density in this case shall be 

𝐽 = 𝑛𝑒𝐴𝑣 and 𝐽 = 𝜎𝐸 

𝐽 = 𝜎(𝐸0�̂� + 𝐸1 cos(𝑤𝑡)�̂� +
𝐸0

𝐵0
(cos(𝜔0𝑡) �̂� + (1 − 𝑐𝑜𝑠(𝑤0𝑡))�̂� ×𝐵0�̂�) 

Radiation Intensity pattern 

𝐹0(𝜃, 𝜙) = ∫𝑒−𝑖
𝑤0
𝑐 (𝑥 cos 𝜙 sin 𝜃 + 𝑦 sin 𝜙 cos 𝜃 + 𝑧 cos 𝜃)𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

 𝑑𝑥′𝑑𝑦′𝑑𝑧′ = 𝜌′𝑑𝜌′𝑑𝜙′𝑑z′ 
 

When input is applied at the center, Radiation field pattern 

𝑓(𝜃,𝜙) = ∫∫ ∫ 𝑒−(𝑗
𝜔0
𝑐

(𝜌′ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜙′ +𝜌′ 𝑠𝑖𝑛 𝜃)+𝑧′(cos𝜃)) 𝜌′𝑑𝜌′𝑑𝜙′𝑑𝑧′

1

2

−
1

2

2𝜋

0

𝑏

𝑎

 

 

Radiation Pattern can be written as 

∫ ∫ [(
𝜇𝜔0

4𝜋𝑐
)
2

|𝜌𝑥𝐽0|
2|𝐹0(𝜃, 𝜙)|2 + (

𝜇𝜔1

4𝜋𝑐
)
2

|𝜌𝑥𝐽1|
2|𝐹1(𝜃, 𝜙)|2]

2𝜋

0

𝜋

0

sin 𝜃𝑑𝜃𝑑𝜙 

 

Only real part if we consider 

𝑅𝑒[𝐽0𝑒
−𝑗𝜔0𝑡 + 𝐽1𝑒

−𝑗𝜔1𝑡] 
 

Here, we get multiple harmonics in the results. These harmonics can be filtered out. For any particular 

frequency application, unwanted frequency can be rejected by making use of proper filtering techniques. 

 

Input Impedance Of The Antenna 

 

𝑍𝑖𝑛 = ∫(𝐸. 𝐽/|𝐼|~2)𝑑𝑉 

𝑍𝑖𝑛 =
∫ ∫ ∫ 𝜎𝐸1(𝐸0 + 𝜐𝐵)𝜌𝑑𝜌𝑑𝜙𝑑𝑧

11

6

2𝜋

0

6

0

𝜎2(𝐸2 + 𝜐𝐵2)
 

Where J is current density, E is electric field applied , I is load current, v velocity of the fluid and V represents 

volume integral. 

 

Far field radiation Pattern 

Space here r-radius, 𝜃-Angle of elevation, 𝜙- azimuth angle, are first and second components of the frequency 

and r, 𝜃, 𝜙 are spherical co-ordinates. 

 

0 ≤ 𝜃 ≤ 180 (𝜋 𝑟𝑎𝑑) 
0 ≤ 𝜙 ≤ 360 (2𝜋 𝑟𝑎𝑑) 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜃 = cos−1
𝑧

𝑟
 

http://www.ijesrt.com/
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𝜙 = tan−1
𝑦

𝑥
 

𝑥 = 𝑟 sin 𝜃 cos𝜙 

𝑦 = 𝑟 sin 𝜃 sin 𝜙 

Z=rcos 𝜃 

 

v x B shall provide pointing vector in case of fluid. E x H gives pointing vector , here H vector to embed v effect 

due to conducting fluid 𝐸𝜃, 𝐻𝜃 , 𝐸𝜙 , 𝐻𝜙  are electric and magnetic fields of MHD antenna and the pointing vector 

shall have the effect of conducting fluid velocity generated due to E, Radiation pattern shall depend on average 

radiated power. Any spherical coordinate triplet (r, 𝜑), specify single point of three space coordinates in 

radiation field. 

𝐸𝜃 = −
𝛿𝐴𝜃

𝛿𝑡
−

𝛿𝜙

𝛿𝜃
 

𝐸𝜙 = −
𝛿𝐴𝜙

𝛿𝑡
−

1

𝑟 sin𝜃

𝛿𝜙

𝛿𝜃
  and 

𝐸𝜃 = −
𝛿𝐴𝜃

𝛿𝑡
 

𝐸𝜙 = −
𝛿𝐴𝜙

𝛿𝑡
 

Also  𝐻𝜃 =
1

𝜇
∇⃗⃗ × 𝐴 = ||

�̂�

𝑟2 sin 𝜃

�̂�

𝑟 𝑠𝑖𝑛 𝜃

�̂�

𝑟
𝛿

𝛿𝑟

𝛿

𝛿𝜃

𝛿

𝛿𝜙

𝐴𝑟 𝑟𝐴𝜃 rsin 𝜃 𝐴𝜙

|| 

Solution of above matrix shall provide us 

𝜃

rsin 𝜃
(

𝛿

𝛿𝜙
𝐴𝑟 −

𝛿

𝛿𝑟
sin 𝜃 𝐴𝜙) +

�̂�

𝑟
(
𝛿𝑟

𝛿𝑟
𝐴𝜃 −

𝛿

𝛿𝜃
𝐴𝑟) 

Hence 

𝐻𝜃 = −
1

𝑟𝑠𝑖𝑛 𝜃

𝛿

𝛿𝑟
(𝑟 𝑠𝑖𝑛 𝜃 𝐴𝜙) = −

𝛿

𝛿𝑟
𝐴𝜙 

 And 

𝐻𝜙 =
1

𝑟

𝑑

𝑑𝑟
(𝑟𝐴𝜃) =

𝛿

𝛿𝑟
𝐴𝜃 

(𝐸 × 𝐻). 𝜎 = 𝐸𝜃𝐻𝜙 − 𝐻𝜃𝐸𝜙 

(Resulting Pointing Vector) On substitution 

Pointing vector =−
𝛿

𝛿𝑡
𝐴𝜃

𝛿

𝛿𝑟
𝐴𝜃 −

𝛿

𝛿𝑡
𝐴𝜙

𝛿

𝛿𝑟
𝜙 

𝐴𝜃 =
𝜓(𝑟,𝜙, 𝑡)

𝑟
−

𝜓, 𝑡

𝑟
 

And 

 

∫ ∫ (𝐸 × 𝐻). 𝜎 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙
2𝜋

0

𝜋

0
Shall provide pointing vector of radiator.  

And    J= (E + v x B)  shall be the resultant of MHD antenna system, we need to calculate E at a given 

frequency. Here, first and second component of vector potentials are. 

𝐴1 =
𝜇

4𝜋
𝜎

∫ �⃗� (𝑟′⃗⃗ , 𝜔)𝑒− 
𝑗𝜔|�⃗⃗� −𝑟′⃗⃗⃗⃗ |

𝑐

|𝑟 − 𝑟′⃗⃗ |
𝑑3𝑟′ 

 or 

𝐴1 =
𝜇

4𝜋𝑟
𝜎 ∫ �⃗� (𝑟′⃗⃗ , 𝜔)𝑒− 

𝑗𝜔|�⃗⃗� −𝑟′⃗⃗⃗⃗ |

𝑐 𝑑3𝑟′ 

And second component 

𝐴2 =
𝜇

4𝜋
𝜎

∫ 𝑣 (𝑟′⃗⃗  ⃗, 𝜔) × �⃗� (𝑟′⃗⃗  ⃗, 𝜔 − 𝜔1)𝑒
− 

𝑗𝜔|�⃗⃗� −𝑟′⃗⃗⃗⃗ |

𝑐

|𝑟 − 𝑟′⃗⃗ |
𝑑3𝑟′𝑑𝜔1 

𝐴2 =
𝜇

4𝜋𝑟
𝜎𝑒− 

𝑗𝜔

𝑐
𝑟 ∫𝑣 (𝑟′⃗⃗  ⃗, 𝜔1) 

http://www.ijesrt.com/
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𝑋 �⃗� (𝑟′⃗⃗  ⃗, 𝜔 − 𝜔1)𝑑𝜔1𝑒
𝑗𝜔

𝑐
�̂�𝑟′

𝑑3𝑟′, with the help of A1 and A2 we can evaluate total magnitude of radiated energy 

per unit frequency per unit volume. This spectral density can be evaluated by applying Parseval’s theorem 

(mathematics of DFT). As electric field 

𝐸𝜃 = −𝑗𝜔(𝐴1𝜃 + 𝐴2𝜃) 
𝐸 = −𝑗𝜔𝐴1𝜃𝜃 − 𝑗𝜔𝐴1𝜙�̂� 

𝐻𝜙 = −
𝑗𝜔

𝑟
(𝐴1𝜙 + 𝐴2𝜙) 

 

Here 𝐻𝜙embeds the velocity component of fluid at a given frequency. Now we shall evaluate to compute energy 

spectral density. On integration we can evaluate 𝐴1𝜃 𝑎𝑛𝑑 𝐴2𝜃total radiated energy. Also, we shall work to find 

x, y, z component of pointing vector.  

 

Where r’ denotes source and r denotes far field distance. at a large distance shall contribute for η=μ/Ɛ for plane 

wave propagation. 

 

𝐴1𝜃 𝑎𝑛𝑑 𝐴2𝜃 should be function of (𝜃, 𝜙,𝜔) also 𝜃 = �̂�𝑋�̂� from spherical coordinates 𝐸𝜃𝑋𝐻𝜙shall provide us 

the pointing vector of the radiated field. Here 1/r component reside in 𝜙, we need to calculate Component 𝜃 to 

enable us far field component at large distance, also η=μ/Ɛ for plane wave. We can thus evaluate total energy 

radiated. 

 

 We have�̂� = ′𝜃 and after normalization Sin 𝜃  term gets cancelled. 

(E x B) pointing vector for x, y, z components and taking𝑒−𝑗𝜔𝑡 as common, we can evaluate𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 . 

𝐸 = −𝑗𝜔𝐴1𝜃𝜃 − 𝑗𝜔𝐴1𝜙�̂� 

 

Our objective is to evaluate total energy radiated per unit frequency per unit volume. 

𝐸𝜃 = −𝑗𝜔(𝐴1𝜃 + 𝐴2𝜃) 

𝐻𝜙 = −
𝑗𝜔

𝜂
(𝐴1𝜙 + 𝐴2𝜙) 

 

here effect fluid velocity v have been embedded in H field 

1

2
𝑅𝑒[𝐸𝜃𝐻𝜙] = ∫

𝜔2

𝜂
𝑅𝑒(𝐴𝜃𝐴𝜙)𝑑𝜔𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙 

 

assuming real part will effectively contribute. 

�̂� = �̂� cos𝜙 sin 𝜃 + �̂� sin 𝜙 sin 𝜃 + �̂� cos 𝜃 

𝜃 =
𝛿�̂�

𝛿𝜃
= �̂� cos𝜙 cos𝜃 + �̂� sin 𝜙 cos𝜃 − �̂� sin 𝜃 

�̂� =
𝛿�̂�

𝛿𝜙
= −�̂� sin𝜙 sin 𝜃 + �̂� cos𝜙 cos𝜃 

Hence 

𝐴1𝜃 =
𝑒−𝑗

𝜔

𝑐
𝑟

𝑟
[
𝜇𝜎

4𝜋
∫(𝐸𝑥(𝑟′⃗⃗  ⃗, 𝜔) cos 𝜙 cos𝜃 + 𝐸𝑦(𝑟′⃗⃗  ⃗, 𝜔) sin 𝜃 sin 𝜙)

+ 𝐸𝑧(𝑟
′⃗⃗  ⃗, 𝜔) cos𝜃𝑒−𝑗

𝜔

𝑐
(𝑥′cos𝜃 cos𝜙+𝑦′sin𝜃 sin𝜙+𝑧′ cos𝜃)] 𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

𝐴2𝜃 =
𝑒−𝑗

𝜔

𝑐
𝑟

𝑟
[
𝜇𝜎

4𝜋
∫𝜈𝜙(𝑟′⃗⃗  ⃗, 𝜔) + 𝐵𝑟(𝑟′⃗⃗  ⃗, 𝜔 − 𝜔1) + 𝐵𝜙(𝑟′⃗⃗  ⃗, 𝜔 − 𝜔1) 𝑒−𝑗

𝜔

𝑐
�̂�𝑟 ]𝑑3𝑟′ 

 

Hence, pointing vector can be defined as 

𝐸𝜃 = −𝑗𝜔
𝑒−𝑗

𝜔

𝑐
𝑟

𝑟
(𝐴1𝜃(𝜃, 𝜙,𝜔) + 𝐴2𝜃(𝜃, 𝜙, 𝜔)) 

And 

𝐻𝜙 = −𝑗𝜔
𝑒−𝑗

𝜔

𝑐
𝑟

𝑟
(𝐴1𝜙(𝜃, 𝜙, 𝜔) + 𝐴2𝜙(𝜃, 𝜙, 𝜔)) 
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Hence energy spectral density 

𝐷 = −𝑗𝜔∫𝜔2 𝑅𝑒(𝐴1𝜃 + 𝐴2𝜃)(𝐴1𝜙
⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐴2𝜙

⃗⃗ ⃗⃗ ⃗⃗  ⃗) sin 𝜃 𝑑𝜃 𝑑𝜙 

 

Energy Spectral Density be evaluated by applying Parseval’s Theorem 

∫𝑓(𝑡)𝑔(𝑡)𝑑𝑡 =
1

2𝜋
∫𝑓(𝜔), �̂�(𝜔)𝑑𝜔 

Or 

∫ �⃗� (𝑟 ,𝜔) × ∫ �⃗⃗� (𝑟 , 𝜔) �̂�𝑑𝑠 𝑑𝜔 

 

This shall provide us total energy radiated by the MHD antenna system. 

𝐷 =
1

2𝜋
∫ �⃗� (𝑟 , 𝜔) × ∫ �⃗⃗� (𝑟 , 𝜔) �̂�𝑑𝑠 𝑑𝜔 

 

III. DESCRIPTION OF MHD ANTENNA 
Two cylindrical tubes of Propylene Random Copolymer Pipes (PPR) of diameters of 10.5cm and 6.2cm of 

height 6.5cm respectively mounted on copper ground plane of 35cm diameter. Standard SMA is mounted at the 

center of y axis for RF excitation. Two tin electrodes for biasing plasma are mounted in such a way that filed is 

orthogonal to RF input and magnetic field making direct contact with the conducting fluid. Bias voltage to the 

electrodes of tin 1.2 cm x 4.1 cm mounted on the inner wall of the tube, making physical contact with the 

conducting fluid, is given through variable DC source in the range 5-25 volts with BIAS TEE arrangement 

safety of VNA . SMA connector male part (protruded) acts as probe inserted into plasma. The probe dimensions 

are 0.08 cm in diameter and 0.75cm long. This probe is inserted in such a way that it makes direct contact with 

the conducting fluid in dielectric resonator. Two permanent bar magnets having dimensions 15cm x4cm x2cm 

are placed perpendicular to the electric field, so as to produce Lorentz force, resulting into fluid flow. Here, 

DRA (Dielectric Resonator Antenna) is filled with saline water having TDS (total dissolved salt) between 4000 

to 12000. Adding common salt to water will provide variable TDS. Volume of saline water decides geometrical 

dimensions of DRA to produce desired resonant frequency. The resonator column effects resonant frequency. 

Radiating resistance and resonant frequency depends on largely on shape and geometrical dimensions of fluid 

inside the tube and nano particles of the fluid. 40 GHz Network Analyser VNA-L5230 have been used to 

measure return loss and resonant frequency. The Radiation patterns and Gain measurements were carried out at 

near field test facility of Bharat Electronics an Ministry of Defence, for resonant frequency 4.59 GHz  to get E , 

H and Cross fields patterns. Measured results of prototype antenna are Return loss = -27.1dB, Gain = 9.2 dBi 

and Resonant frequency = 4.59 GHz. We have formulated various equations based on fluid frame of our 

prototype design. Here, we first describe beam formation, radiating patterns and resonance frequency. Here, we 

see radiation parameters of our antenna depends not only on electromagnetic fields, but also on fluid velocity 

field. From analytical results it is observed that it generates harmonics of resonant frequency. Comparison 

between prototype result and numerical results has been made. Here it observed that varying fluid volume can 

result into tunable resonant frequency. The adaptable permeability and permeability is described in section 

three. This can result into possible tuning of polarization. As results have shown generation of harmonics with 

fundamental frequency, hence with proper filtering, this antenna can made to operate at any desired frequency 

from the harmonics. The effects of magnetic bias on antenna have been investigated. The principle of this class 

of antenna is dielectric resonator, where salt (in solution) and electric field modifies the dielectric properties. We 

have varied fluid salinity, magnitude electric field and magnetic field, fluid height for all possible combinations. 

Here, we see chemical properties of fluid, shape of tube, effective biasing voltage and magnetic field conditions 

changes antenna parameters. Here ionized currents contribute to radiate energy in conducting fluid. The tube 

was applied external magnetic field which interacts with electric field to produce Lorentz forces, resulting in 

fluid flow with velocity v. Now there are three main fields i.e. electric field, magnetic field and velocity fields, 

which are responsible for the possible radiations. The radiated energy and its pattern are function of RF input 

excitation, fields applied, fluid shape and nano particle of fluid. Hence an adaptive mechanism can be built in 

antenna to produce versatility in radiation pattern, due to dynamic fluid perturbations. We shall consider the 

fluid in coordinates rotating with it and mechanical equations of motion must include effects of centrifugal and 

Coriolis forces. Wave are also due to Coriolis forces (2v x Ω), which occur in rotation. Here we first descr ibe 

beam formation, radiating patterns and resonance frequency. Radiation patterns in the far fields depend not only 

on electromagnetic field but also on fluid velocity. Gain measurements with and without electric and magnetic 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Kumar * et al., 6(9): September, 2017]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [110] 

fields were carried out . It got increased from 6.22 dBi to 9.10 dBi on applying electric fields at a value of 5.2 V, 

DC to 7.5 V. Also considerable change in Return loss were seen i.e. S11 measured ‐18.7 dB without Electric 

and Magnetic fields and increased to ‐21.7dB DC bias. Return loss further improved to ‐27.7 dB when both 

electric and magnetic fields were applied 40 dB isolation was seen in cross polarization results. The above 

quoted results are not optimized. No corrosion takes place in this type of antenna. Obtained results indicated, 

reconfigurability, frequency agility and tuning of Gain possibility. Sea water and mercury results 

 

In this antenna, only ionized currents contribute to radiateenergy in conducting fluid. Radiating resistance and 

resonantfrequency shall depend on shape of fluid inside the tube andnano particles of the fluid. The tube was 

applied to externalmagnetic field which interacts with electric field to produceLorentz forces, resulting in fluid 

flow with velocity v. Nowthere are three main fields i.e. electric field, magnetic field andvelocity fields, which 

are responsible for the possibleradiations. The radiated energy and its pattern are function ofRF input excitation, 

fields applied, fluid shape and nanoparticle of fluid. Hence an adaptive mechanism can be built inantenna to 

produce versatility in radiation pattern and broadband effects, due to dynamic material perturbations.We have 

formulated to focus onphysics of the design analysis of an MHD antenna. Here wedescribe complete mechanism 

for beam formation, radiatingpatterns and resonance. Radiation pattern in the far fieldsdepends not only on 

electromagnetic field but also on fluidvelocity field. We have described mathematical relations ofpermeability 

as the function of E, H and v, when conductivityand permittivity are kept constant. With proper 

filteringtechniques, MHD antenna can made to operate at one singlefrequency. Fluid shape with fields decides 

resonant frequency.The effective permeability can be controlled by applying astatic magnetic field. This leads to 

the possibility of magnetically tuning of polarization of the antenna.Polarization tuning of antenna was 

measured as a function ofstrength for magnetization parallel to the x- and y-directions.The effects of magnetic 

bias on antenna have been investigated.The principle of this class of antenna is essentially that of adielectric 

resonator, where salt (in solution) and electric fieldmodifies the dielectric properties. The resonator column 

shapedetermined the operating frequency, allowing impedance matchand frequency of operation to be fully 

tunable. We have varied fluid salinity, electric field,magnetic field and fluid height for all possible 

radiationmeasurement in experimentations.  

 

IV. IMPORTANT RESULT 
 

 

Figure 1. Return loss when both electric and magnetic field applied. 
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Figure 2. HFSS Radiation Pattern 

 

 

Figure 3. Directivity 

 

V. CONCLUSION 
It was observed from the measured results that there is significant improvement in return loss when salinity of 

fluid is enhanced. Also return loss improved due electric and magnetic fields intensity. We have observed that 

electric field have significant impact on return loss, these measured results are placed. Bias TEE was used to 

feed mixed signal from the same port .Return loss was significantly high at 17V, DC. Height of fluid tube (fluid 

shape), nano particles of fluid contribute to form resonant frequency of fluid antenna. When height of fluid was 

3.5 cm, our antenna resonated at 4.59 GHz and when height of fluid increased to 6.0 cm , same antenna 

resonated at 8.59 GHz. We have also simulated taking saline water as dielectric in HFSS antenna software for 

resonant frequency evaluation as per. We could thus achieved reconfigurability and frequency agility in this 

antenna. It has stealth property, as reflector is voltage dependent, hence can be most suitable for Military 

applications. We can also use this antenna as MIMO (multiple input outputs). More work towards micro-fluidic 

frequency reconfiguration, fluidic tuning of matching networks for bandwidth enhancement need to be explored. 

As a Future work, we will investigate radiation patterns as a special case to this cylindrical antenna 

with detailed physics involved. 
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